

Safety Evaluation Report

Related to the License Renewal of the Browns Ferry Nuclear Plant, Units 1, 2, and 3

Docket Nos. 50-259, 50-260, and 50-296

Tennessee Valley Authority

Safety Evaluation Report

Related to the License Renewal of the Browns Ferry Nuclear Plant, Units 1, 2, and 3

Docket Nos. 50-259, 50-260, and 50-296

Tennessee Valley Authority

Manuscript Completed: January 2006 Date Published: April 2006

Prepared by Y. Diaz-Sanabria and R. Subbaratnam

Division of License Renewal Office of Nuclear Reactor Regulation U.S. Nuclear Regulatory Commission Washington, DC 20555-0001

ABSTRACT

This safety evaluation report (SER) documents the technical review of the Browns Ferry Nuclear Plant (BFN), Units 1, 2, and 3, license renewal application (LRA) by the staff of the U.S. Nuclear Regulatory Commission (NRC) (the staff). By letter dated December 31, 2003, Tennessee Valley Authority (TVA or the applicant) submitted the LRA for BFN in accordance with Title 10, Part 54, of the *Code of Federal Regulations* (10 CFR Part 54). TVA is requesting renewal of the operating licenses for BFN Units 1, 2, and 3, (Facility Operating License Numbers DPR-33, DPR-52, and DPR-68, respectively) for a period of 20 years beyond the current expiration dates of midnight December 20, 2013, for Unit 1; midnight June 28, 2014, for Unit 2; and midnight July 2, 2016, for Unit 3.

The BFN units are located on the north shore of Wheeler Reservoir in Limestone County, Alabama, at Tennessee River Mile 294. The site is approximately 30 miles west of Huntsville, Alabama; it is also 10 miles northwest of Decatur, Alabama and 10 miles southwest of Athens, Alabama. The NRC issued the construction permits for Units 1 and 2 on May 10, 1967; for Unit 3 on July 31, 1968. The NRC issued the operating licenses for Unit 1 on December 20, 1973; for Unit 2 on June 28, 1974; and for Unit 3 on July 2, 1976. All of the units consist of a Mark I boiling water reactor (BWR) with a nuclear steam supply system supplied by General Electric Corporation. The balance of each of the plants was originally designed and constructed by the Tennessee Valley Authority. Unit 1 licensed power output is 3293 megawatt thermal (MWt), with a gross electrical output of approximately 1100 megawatt electric (MWe). Units 2 and 3 licensed power output is 3458 MWt, with a gross electrical output of approximately 1155 MWe. The units operated from the original licensing until 1985 when they were voluntarily shut down by the applicant to address management and technical issues. The applicant then implemented a comprehensive nuclear performance plan to correct the deficiencies that led to the shutdown. This plan included changes in management, programs, processes and procedures, as well as extensive equipment refurbishment, replacement, and modifications. Unit 2 was subsequently restarted in 1991, and Unit 3 followed in 1995. In the early 1990s, the applicant decided to defer restart of Unit 1. Unit 1 is currently in a shutdown status.

This SER presents the status of the staff's review of information submitted to the NRC through December 31, 2005, the cutoff date for consideration in the SER. The staff identified open items and confirmatory items that had to be resolved before the staff could make a final determination on the application. SER Sections 1.5 and 1.6 summarize these items and their resolutions. Section 6 provides the staff's final conclusion on the review of the BFN LRA.

TABLE OF CONTENTS

Abstract	iii
Table of Contents	V
Abbreviations	XV
1 Introduction and General Discussion	1-1
1.1 Introduction	1-1
1.2 License Renewal Background	1-3
1.2.1 Safety Review	1-3
1.2.2 Environmental Review	1-5
1.3 Principal Review Matters	
1.3.1 Operating Experience for BFN Unit 1 in Satisfying the Intent of the	
Renewal Rule	1-5
1.3.1.1 Regulatory Framework	1-5
1.3.1.2 Collective Operating Experience of the Three BFN Units	
1.3.1.3 Corrective Action Program (CAP) Applicability	
1.3.1.4 Aging Mechanism Similarities Between Units after Layup	
Recovery	
1.3.1.5 Plant Upgrades	
1.3.1.6 Inspections/Programs Expanded to Proactively Prevent A	
Related Wear	
1.3.2 License Renewal at Currently Licensed Power Level	
1.3.3 Integration of Unit 1 Restart Modification	
1.3.4 Other Regulatory Requirements	
1.4 Interim Staff Guidance	
1.5 Summary of Open Items	
1.6 Summary of Confirmatory Items	
1.7 Summary of Proposed License Conditions	1-10
2 Structures and Components Subject to Aging Management Review	
2.1 Scoping and Screening Methodology	
2.1.1 Introduction	
2.1.2 Summary of Technical Information in the Application	
2.1.2.1 Scoping Methodology	
2.1.2.2 Screening Methodology	
2.1.3 Staff Evaluation	
2.1.3.1 Scoping Methodology	
2.1.3.2 Screening Methodology	
2.1.4 Conclusion	
2.2 Plant-Level Scoping Results	
2.2.1 Introduction	
2.2.2 Summary of Technical Information in the Application	
2.2.4 Conclusion	
4.4. TOURDION	∠-, , \(\)

2.3	Scoping and Screening Results:	Mechanical Systems	2-31
		ms	
	2.3.1.1 Reactor Vess	el	2-37
		el Internals	
		el Vents and Drains System	
		culation System	
		tures	
		System	
		Treatment System	
		e Coolant Injection System	
		t Removal System	
		ystem	
		Inerting System	
		Atmosphere Dilution System	
	, ,		
		er System	
		em	
		t Removal Service Water System	
		Water System	
		Water System	
		Fire Protection System	
		r System	
		stem	
		ilation, and Air Conditioning System	
		System	
		System	
		ange System	
		nage System	
		at System	
		Chemical Treatment System	
		er Backwash Air System	
		uid Control System	
		tem	
	•	Equipment Cooling Water System	
		er Cleanup System	
		ding Closed Cooling Water System	
		e Isolation Cooling System	
		cay Heat Removal System	
		Waste Treatment System	
		poling and Cleanup System	
		ig and Storage System	
		rator System	
		Drive System	
		rator Starting Air System	
		onitoring System	
		nitoring System	
		n-Core Probe System	
		em	

	2.3.4	Steam and Power Conversion Systems	
		2.3.4.1 Main Steam System	
		2.3.4.2 Condensate and Demineralized Water System	
		2.3.4.3 Feedwater System	2-136
		2.3.4.4 Heater Drains and Vents System	2-137
		2.3.4.5 Turbine Drains and Miscellaneous Piping System	2-140
		2.3.4.6 Condenser Circulating Water System	2-142
		2.3.4.7 Gland Seal Water System	2-144
2.4	Scoping	and Screening Results: Structures	
	2.4.1	Boiling Water Reactor Containment Structures	2-147
		2.4.1.1 Primary Containment Structure	2-147
	2.4.2	Class 1 Group 2 Structures	2-156
		2.4.2.1 Reactor Buildings	2-157
		2.4.2.2 Equipment Access Lock	2-163
	2.4.3	Class 1 Group 3 Structures	2-165
		2.4.3.1 Diesel Generator Buildings	2-165
		2.4.3.2 Standby Gas Treatment Building	2-168
		2.4.3.3 Off-Gas Treatment Building	2-169
		2.4.3.4 Vacuum Pipe Building	2-171
		2.4.3.5 Residual Heat Removal Service Water Tunnels	2-173
		2.4.3.6 Electrical Cable Tunnel from the Intake Pumping Station to	the
		Powerhouse	2-175
		2.4.3.7 Underground Concrete Encased Structures	2-177
		2.4.3.8 Earth Berm	
		2.4.3.9 South Access Retaining Walls	2-181
	2.4.4	Class 1 Group 6 Structures	
		2.4.4.1 Intake Pumping Station	2-182
		2.4.4.2 Gate Structure No. 3	2-184
		2.4.4.3 Intake Channel	2-185
		2.4.4.4 North Bank of the Cool Water Channel East of Gate Structu	ıre
		No. 2	2-187
		2.4.4.5 South Dike of Cool Water Channel between Gate Structure	
		2 and 3	2-188
	2.4.5	Class 1 Group 8 Structures	2-190
		2.4.5.1 Condensate Water Storage Tanks' Foundations and Trench	
		2.4.5.2 Containment Atmosphere Dilution Storage Tanks' Foundati	
	2.4.6	Class 1 Group 9 Structures	
		2.4.6.1 Reinforced Concrete Chimney	
	2.4.7	Non-Class 1 Structures	
		2.4.7.1 Turbine Buildings	
		2.4.7.2 Diesel High Pressure Fire Pump House	
		2.4.7.3 Vent Vaults	
		2.4.7.4 Transformer Yard	
		2.4.7.5 161 kV Switchyard	
		2.4.7.6 500 kV Switchyard	
		2.4.7.7 Isolation Valve Pits	
		2.4.7.8 Radwaste Building	2-208

2.4.7.9 Service Building	
2.4.8 Structures and Component Supports Commodities	2-212
2.4.8.1 Structures and Component Supports Commodity Group	2-212
2.4.9 Conclusion	2-216
2.5 Scoping and Screening Results: Electrical and Instrumentation and Controls	
Systems	2-217
2.5.1 Electrical and Instrumentation and Control Commodities	2-217
2.5.1.1 Summary of Technical Information in the Application	
2.5.1.2 Staff Evaluation	
2.5.1.3 Conclusion	
2.6 Integration of Browns Ferry Nuclear, Unit 1, Restart Activities and License Re	
Activities	
2.6.1 Regulatory Framework for Review of BFN LRA and Integration Unit	
Restart Activities	2-224
2.6.1.1 Main Steam Isolation Valve Alternate Leakage Treatment	
2.6.1.2 Containment Atmosphere Dilution System	2-228
2.6.1.3 Fire Protection	2-230
2.6.1.4 Environmental Qualification	2-232
2.6.1.5 Intergranular Stress Corrosion Cracking	
2.6.1.6 Boiling Water Reactor Vessel and Internals Project Inspect	
and Flaw Evaluation Guidelines Implementation	
2.6.1.7 Anticipated Transients Without Scram	
2.6.1.8 Reactor Vessel Head Spray	
2.6.1.9 Hardened Wetwell Vent	
2.6.1.10 Service Air and Demineralized Water Primary Containmer Penetrations	
2.6.1.11 Auxiliary Decay Heat Removal System	
2.6.1.12 Maintenance Rule	
2.6.1.13 Reactor Water Cleanup System	
2.6.2 Staff Evaluation	
2.6.3 Conclusion	
2.7 Conclusion for Scoping and Screening	2-247
3 Aging Management Review Results	
3.0 Applicant's Use of the Generic Aging Lessons Learned Report	3-1
3.0.1 Format of the License Renewal Application	3-2
3.0.1.1 Overview of Table 1	3-3
3.0.1.2 Overview of Table 2	3-3
3.0.2 Staff's Review Process	3-4
3.0.2.1 Review of AMPs	
3.0.2.2 Review of AMR Results	
3.0.2.3 UFSAR Supplement	
3.0.2.4 Documentation and Documents Reviewed	
3.0.3 Aging Management Programs	
3.0.3.1 AMPs That Are Consistent with the GALL Report, for Which	
1 '	
Further Evaluation is Not Recommended	
3.0.3.2 AMPs That Are Consistent with the GALL Report with Exce	•
or Enhancements	. 3-26

		3.0.3.3 AMPs That Are Not Consistent with or Not Addressed in the	е
		GALL Report	3-101
	3.0.4	Quality Assurance Program Attributes Integral to Aging Managemen	ıt
		Programs	
		3.0.4.1 Summary of Technical Information in the Application	
		3.0.4.2 Staff Evaluation	3-120
		3.0.4.3 Conclusion	
3.1		anagement Review of Reactor Vessel, Internals, and Reactor Coolan	
		em	
		Summary of Technical Information in the Application	
	3.1.2	Staff Evaluation	
		3.1.2.1 AMR Results That Are Consistent with the GALL Report, for	
		Which Further Evaluation is Not Recommended	
		3.1.2.2 AMR Results That Are Consistent with the GALL Report, for	
		Which Further Evaluation is Recommended	
		3.1.2.3 AMR Results That Are Not Consistent with or Not Addresse	
		the GALL Report	
		Conclusion	
3.2		anagement of Engineered Safety Features	
		Summary of Technical Information in the Application	
	3.2.2	Staff Evaluation	
		3.2.2.1 AMR Results That Are Consistent with the GALL Report, for	
		Which Further Evaluation Is Not Recommended	
		3.2.2.2 AMR Results That Are Consistent with the GALL Report, for	
		Which Further Evaluation Is Recommended	
		3.2.2.3 AMR Results That Are Not Consistent with or Not Addresse	
		the GALL Report	
		Conclusion	
3.3	Aging M	anagement of Auxiliary Systems	3-202
		Summary of Technical Information in the Application	
	3.3.2	Staff Evaluation	
		3.3.2.1 AMR Results That Are Consistent with the GALL Report, for	
		Which Further Evaluation is Not Recommended	
		3.3.2.2 AMR Results That Are Consistent with the GALL Report, for	
		Which Further Evaluation is Recommended	
		3.3.2.3 AMR Results That Are Not Consistent with or Not Addresse	
		the GALL Report	
		Conclusion	
3.4		anagement of Steam and Power Conversion System	
		Summary of Technical Information in the Application	
	3.4.2	Staff Evaluation	
		3.4.2.1 AMR Results That Are Consistent with the GALL Report, for	
		Which Further Evaluation is Not Recommended	
		3.4.2.2 AMR Results That Are Consistent with the GALL Report, for	
		Which Further Evaluation is Recommended	
		3.4.2.3 AMR Results That Are Not Consistent with or Not Addresse	
	0.40	the GALL Report	3-270
	4/1/2	I ANCHIEIAN	4-7/Q

3.5		anagement of Containments, Structures, and Component Supports	
		Summary of Technical Information in the Application	
	3.5.2	Staff Evaluation	
		3.5.2.1 AMR Results That Are Consistent with the GALL Report, for	
		Which Further Evaluation is Not Recommended	
		3.5.2.2 AMR Results That Are Consistent with the GALL Report, for	
		Which Further Evaluation is Recommended	
		3.5.2.3 AMR Results That Are Not Consistent with or Not Addresse	
		the GALL Report	
		Conclusion	
3.6		anagement of Electrical and Instrumentation and Controls	
	3.6.1	Summary of Technical Information in the Application	3-351
	3.6.2	Staff Evaluation	
		3.6.2.1 AMR Results That Are Consistent with the GALL Report, for	r
		Which Further Evaluation is Not Recommended	3-353
		3.6.2.2 AMR Results That Are Consistent with the GALL Report, for	
		Which Further Evaluation is Recommended	3-355
		3.6.2.3 AMR Results That Are Not Consistent with or Not Addresse	ed in
		the GALL Report	3-356
	3.6.3	Conclusion	3-362
3.7	Aging Ma	anagement Review of Unit 1 Systems in Layup for Extended Outage	
			3-363
	3.7.1	General Technical Concerns	3-363
		3.7.1.1 Wet Layup Program Chemistry Control	3-368
		3.7.1.2 Replaced Components	
		3.7.1.3 Inspections Verification Programs for Layup and Chemistry	,
		Control	3-371
		3.7.1.4 MIC	3-378
		3.7.1.5 Transition from Layup Program to System Cleanliness	
		Verification Program	3-381
	3.7.2	Reactor Vessel internals and Reactor Coolant System	3-382
		3.7.2.1 Reactor Recirculation System (068)	3-382
		3.7.2.2 Reactor Vessel (RV), Reactor Vessel Internals (RVIs)	3-385
	3.7.3	Engineered Safety Features	3-391
		3.7.3.1 Engineered Safety Features Systems in Dry Layup	3-391
		3.7.3.2 Engineered Safety Features Systems in Various Wet	
		Environments	3-395
		3.7.3.3 Engineered Safety Features Systems in Various Dry	
		Environments	3-403
	3.7.4	Auxiliary Systems	3-407
		3.7.4.1 Auxiliary Systems in Dry Layup	3-407
		3.7.4.2 Auxiliary Systems in Wet Lay up	3-413
		3.7.4.3 Auxiliary Systems Not in Layup Program	
	3.7.5	Steam and Power Conversion Systems	
		3.7.5.1 Steam and Power Conversion Systems in Wet Layup	
		3.7.5.2 Steam and Power Conversion Systems in Various Wet	
		Environments	3-423

	3.7.5.3 Steam and Power Conversion Systems in Various Dry	
	Environments	
	3.7.6 Containments, Structures, and Component Supports 3	-437
	3.7.6.1 Summary of Technical Information in the Application 3	-437
	3.7.6.2 Technical Staff Evaluation	-437
	3.7.6.3 Conclusion	-442
	3.8 Conclusion for Aging Management	-443
4	Time-Limited Aging Analyses	4-1
	4.1 Identification of Time-Limited Aging Analyses	
	4.1.1 Summary of Technical Information in the Application	4-1
	4.1.2 Staff Evaluation	4-2
	4.1.3 Conclusion	
	4.2 Neutron Embrittlement of Reactor Vessel and Internals	4-3
	4.2.1 Reactor Vessel Materials Upper Shelf Energy Reduction due to Neutro	n
	Embrittlement	
	4.2.1.1 Summary of Technical Information in the Application	4-4
	4.2.1.2 Staff Evaluation	
	4.2.1.3 UFSAR Supplement	
	4.2.1.4 Conclusion	4-8
	4.2.2 Adjusted Reference Temperature for Reactor Vessel Materials due to	
	Neutron Embrittlement	
	4.2.2.1 Summary of Technical Information in the Application	
	4.2.2.2 Staff Evaluation	
	4.2.2.3 UFSAR Supplement	
	4.2.2.4 Conclusion	
	4.2.3 Reflood Thermal Shock Analysis of the Reactor Vessel	
	4.2.3.1 Summary of Technical Information in the Application	
	4.2.3.2 Staff Evaluation	
	4.2.3.3 UFSAR Supplement	
	4.2.3.4 Conclusion	4-11
	4.2.4 Reflood Thermal Shock Analysis of the Reactor Vessel Core Shroud	
	4.2.4.1 Summary of Technical Information in the Application	
	4.2.4.2 Staff Evaluation	
	4.2.4.3 UFSAR Supplement	
	4.2.4.4 Conclusion	
	4.2.5 Reactor Vessel Thermal Limit Analyses: Operating Pressure-Tempera	
	Limits	
	4.2.5.1 Summary of Technical Information in the Application	
	4.2.5.2 Staff Evaluation	
	4.2.5.3 UFSAR Supplement	
	4.2.5.4 Conclusion	
	4.2.6 Reactor Vessel Circumferential Weld Examination Relief	
	4.2.6.1 Summary of Technical Information in the Application	
	4.2.6.2 Staff Evaluation	
	4.2.6.3 UFSAR Supplement	4-20
	4.2.6.4 Conclusion	4-20
	4.2.7 Reactor Vessel Axial Weld Failure Probability	4-21

	4.2.7.1 Summary of Technical Information in the Application .	
	4.2.7.2 Staff Evaluation	
	4.2.7.3 UFSAR Supplement	
	4.2.7.4 Conclusion	4-23
4.3	Metal Fatigue	4-23
	4.3.1 Reactor Vessel Fatigue Analysis	4-23
	4.3.1.1 Summary of Technical Information in the Application .	
	4.3.1.2 Staff Evaluation	
	4.3.1.3 UFSAR Supplement	
	4.3.1.4 Conclusion	
	4.3.2 Fatigue Analysis of Reactor Vessel Internals	
	4.3.2.1 Summary of Technical Information in the Application .	
	4.3.2.2 Staff Evaluation	
	4.3.2.3 UFSAR Supplement	
	4.3.2.4 Conclusion	
	4.3.3 Piping and Component Fatigue Analysis	
	4.3.3.1 Summary of Technical Information in the Application .	
	4.3.3.1 Summary of Technical Information in the Application	
	4.3.3.3 UFSAR Supplement	
	4.3.3.4 Conclusion	
	4.3.4 Effects of Reactor Coolant Environment On Fatigue Life of Comp	
	and Piping (Generic Safety Issue 190)	
	4.3.4.1 Summary of Technical Information in the Application .	
	4.3.4.2 Staff Evaluation	
	4.3.4.3 UFSAR Supplement	
	4.3.4.4 Conclusion	
4.4	Environmental Qualification	
	4.4.1 Summary of Technical Information in the Application	
	4.4.2 Staff Evaluation	4-33
	4.4.3 UFSAR Supplement	4-34
	4.4.4 Conclusion	4-34
4.5	Loss of Prestress in Concrete Containment Tendons	4-34
4.6	Primary Containment Fatigue	4-34
	4.6.1 Fatigue of Suppression Chamber, Vents, and Downcomers	
	4.6.1.1 Summary of Technical Information in the Application .	
	4.6.1.2 Staff Evaluation	
	4.6.1.3 UFSAR Supplement	
	4.6.1.4 Conclusion	
	4.6.2 Fatigue of Torus Attached Pipe and Safety Relief Valve Discharge	
	4.5.2 Tadigue of Torus / Madricu Tipe and Galety Relief Valve Disorial	
	4.6.2.1 Summary of Technical Information in the Application .	+ 37 ⊿-37
	4.6.2.2 Staff Evaluation	
	4.6.2.3 UFSAR Supplement	
	· · · · · · · · · · · · · · · · · · ·	
	4.6.2.4 Conclusion	
	4.6.3 Fatigue of Vent Line and Process Penetration Bellows	
	4.6.3.1 Summary of Technical Information in the Application .	
	4.6.3.2 Staff Evaluation	
	4.6.3.3 UFSAR Supplement	
	4.6.3.4 Conclusion	4-40

4.7 Other Plant-Specific Analyses	4-40
4.7.1 Reactor Building Crane Load Cycles	
4.7.1.1 Summary of Technical Information in the Application	
4.7.1.2 Staff Evaluation	
4.7.1.3 UFSAR Supplement	
4.7.1.4 Conclusion	
4.7.2 Corrosion – Flow Reduction	
4.7.3 Dose to Seal Rings for the High Pressure Coolant Injection and R	
Core Isolation Cooling Containment Isolation Check Valves 4.7.4 Radiation Degradation of Drywell Expansion Gap Foam	
4.7.4 Radiation Degradation of Drywell Expansion Gap Foam	
4.7.4.2 Staff Evaluation	
4.7.4.3 UFSAR Supplement	
4.7.4.4 Conclusion	
4.7.5 Corrosion – Minimum Wall Thickness	
4.7.6 Irradiation Assisted Stress Corrosion Cracking of Reactor Vessel	
	4-45
4.7.6.1 Summary of Technical Information in the Application	
4.7.6.2 Staff Evaluation	
4.7.6.3 UFSAR Supplement	
4.7.6.4 Conclusion	
4.7.7 Stress Relaxation of the Core Plate Hold-Down Boils	
4.7.7.2 Staff Evaluation	
4.7.7.3 UFSAR Supplement	
4.7.7.4 Conclusion	
4.7.8 Emergency Equipment Cooling Water Weld Flaw Evaluation	
4.7.8.1 Summary of Technical Information in the Application	4-58
4.7.8.2 Staff Evaluation	
4.7.8.3 UFSAR Supplement	
4.7.8.4 Conclusion	
4.8 Conclusion for Time-Limited Aging Analyses	4-61
5 Review by the Advisory Committee on Reactor Safeguards	5-1
6 Conclusions	6-1
Appendices	
Appendix A: Commitments for License Renewals	A-1
Appendix B: Chronology	
Appendix C: Principal Contributors	C-1
Appendix D: References	D-1

Tables

Table 3.0.3-1 BFN's Aging Management Programs	3-7
Table 3.1-1 Staff Evaluation for Reactor Vessel, Internals, and Reactor Coolant System Components in the GALL Report	23
Table 3.2-1 Staff Evaluation for Engineered Safety Features System Components in the GAL Report	
Table 3.3-1 Staff Evaluation for Auxiliary Systems Components in the GALL Report 3-2	204
Table 3.4-1 Staff Evaluation for Steam and Power Conversion System Components in the GALL Report	:63
Table 3.5-1 Staff Evaluation for Containments, Structures, and Component Supports in the GALL Report	280
Table 3.6-1 Staff Evaluation for Electrical and Instrumentation and Controls in the GALL Report	352

ABBREVIATIONS

AC alternating current

ACI American Concrete Institute

ACSR aluminum conductor steel reinforced

ACRS Advisory Committee on Reactor Safeguards

ADHR auxiliary decay heat removal atmospheric dilution system

AERM aging effect requiring management

AFFF aqueous film-forming foam

AFW auxiliary feedwater AHC access hole cover

AISC American Institute of Steel Construction

AMP aging management program AMR aging management review

ANSI American National Standards Institute

APCSB Auxiliary and Power Conversion Systems Branch

APRM average power range monitor

URI unresolved issue

ART adjusted reference temperature
ASCE American Society of Civil Engineers

ASME American Society of Mechanical Engineers

AST alternate source term

ASTM American Society for Testing and Materials

ATWS anticipated transient without scram

B&PV boiler and pressure vessel
B&W Babcock and Wilcox

BFN Browns Ferry Nuclear Plant

BWR boiling water reactor

BWROG Boiling Water Reactor Owners Group

BWRVIP Boiling Water Reactor Vessel and Internals Project

CAD containment atmosphere dilution CASS cast austentitic stainless steel

CBF cycle-based fatigue

CCCW closed-cycle cooling water

CCWP condensate circulating water pump

CF chemistry factor

CFR Code of Federal Regulations

CI confirmatory item
CLB current licensing basis

CMAA Crane Manufacturers Association of America

CO₂ carbon dioxide
CRD control rod drive
CS core spray

CUF cumulative usage factor

CVP Cleanliness Verification Program CWST condensate water storage tank

DBA design-basis accident
DBE design-basis event
DC design of civil structures
DCN design change notice

DG diesel generator or Draft Regulatory Guide

DGB diesel generator building dpa displacements per atom

ECCS emergency core cooling system

ECP electrochemical potential EDG emergency diesel generator

EECW emergency equipment cooling water

EFPY effective full-power year EMA equivalent margin analysis

EMPAC enterprise maintenance planning and control

EOL end of life

EPRI Electric Power Research Institute

EPU extended power uprate
EQ environmental qualification
ESF engineered safety feature
EVT enhanced visual test

FAC flow-accelerated corrosion

F_{en} environmental fatigue life correction factor FERC Federal Energy Regulatory Commission

FP fire protection

FPC fuel pool cooling and cleanup

FPR Fire Protection Report FSAR final safety analysis report

FW feedwater

GALL Generic Aging Lessons Learned Report

GDC general design criteria

GE General Electric Corporation

GEIS Generic Environmental Impact Statement

GENE General Electric Nuclear Energy
GES general engineering specification

GL generic letter

GSI generic safety issue

HELB high-energy line break

HEPA high efficiency particulate air

HH handhole

HPCI high pressure coolant injection HPFP high pressure fire protection HSLA high-strength low-alloy HVAC heating, ventilation, and air conditioning

HWC hydrogen water chemistry

HX heat exchanger

I&C instrumentation and control

IASCC irradiation assisted stress corrosion cracking

ID inside diameter

IGSCC intergranular stress corrosion cracking

IN information notice

INPO Institute of Nuclear Power Operations

IPA integrated plant assessment
IPS intake pumping station
IR insulation resistance
IRM intermediate range monitor
ISG interim staff guidance
ISI inservice inspection

ISP Integrated Surveillance Program

kV kiloVolt

LER Licensee Event Report LLRT local leak rate test

LLRW low level radioactive waste LOCA loss-of-coolant-accident

LP layup program

LPCI low pressure coolant injection LPRM local power range monitor

LR license renewal

LRA license renewal application LTOP low temperature over-pressure

LWR light water reactor

MEAP material, environment, aging effects, and aging management program

MEL master equipment list MeV million electron Volts

MIC microbiologically influenced corrosion

MS main steam

MSIV main steam isolation valve

MWe megawatt electric MWt megawatt thermal

n/cm² neutrons per square centimeter NDE nondestructive examination

NEDP Nuclear Engineering Design Procedure

NEI Nuclear Energy Institute

NEIL Nuclear Electric Insurance Limited

NEPA National Environmental Policy Act of 1969

NFPA National Fire Protection Association NMCA noble metal chemical application

NPS nominal pipe size

NRC U.S. Nuclear Regulatory Commission

NSR non-safety-related

NSSS nuclear steam supply system

NUREG U.S. Nuclear Regulatory Commission Regulatory Guide

O₂ oxygen

OCCW open-cycle cooling water
OE operating experience
OFS orificed fuel supports

OI open item

PB pressure boundary

PER Problem Evaluation Report
PFM probabilistic fracture mechanics

PT penetrant testing

PTS pressurized thermal shock
PUAR Plant Unique Analysis Report

PVC polyvinyl chloride PW pipe whip restraint

PWR pressurized water reactor

PWSCC primary water stress corrosion cracking

QA quality assurance

RAI request for additional information RBCCW reactor building closed cooling water

RBM rod block monitor

RCIC reactor core isolation cooling

RCPB reactor coolant pressure boundary

RCS reactor coolant system
RCW raw cooling water
RG regulatory guide
RH relative humidity
RHR residual heat removal

RHRSW residual heat removal service water

RPV reactor pressure vessel

RPVII reactor pressure vessel internals inspection

RSW raw service water RT reference temperature

RT_{NDT} reference temperature nil ductility transition

RV reactor vessel

RVI reactor vessel internal reactor water cleanup

SBF stress-based fatigue SBO station blackout

SC structure and component SCC stress corrosion cracking

SCV steel containment vessel
SER Safety Evaluation Report
SGT standby gas treatment
SI surveillance instruction
SIL Service Information Letter
SLC standby liquid control

SMP Structures Monitoring Program

SO₂ sulfur dioxide

SOC statement of consideration

SOER Significant Operating Experience Report

SP shelter/protection

SPP standard program and process

SR safety-related

SRM source range monitor SRP Standard Review Plan

SRP-LR Standard Review Plan for Review of License Renewal Applications for Nuclear

Power Plants

SRV safety relief valve

SS stainless steel or structural support or systems and structures

SSA safe shutdown analysis

SSC system, structure, and component

SSE safe shutdown earthquake

TI technical instruction
TIP traversing in-core probe
TLAA time-limited aging analysis
TS technical specification
TVA Tennessee Valley Authority

TVAN Tennessee Valley Authority Nuclear

UFSAR updated final safety analysis report

UNID unique component identifier

USAS USA standard
USE upper-shelf energy
UT ultrasonic testing

UV ultra violet

√ volt

VFLD vessel flange leak detection VIP vessel and internals project

WO work order

XLPE cross-linked polyethylene

